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Abstract. With the procedure to solve explicitly the equations of the Riemann matrix with
poles, multi-soliton solutions to the Landau-Lifshitz (L—L) equation for a spin chain with an
easy plane are found formally, and a single soliton solution is given explicitly.

1. Introduction

The Landau-Lifshitz equation for a spin chain with an easy plane describes, for example, the
properties of CsNifand has attracted the attention of many authors in the past two decades
[1, 2], but has not been solved exactly by any means attempted [3]. Recently, an exact single
soliton solution to the equation by means of the method of the Darboux transformation matrix
has been reported [3]. The single soliton solution essentially depends on two parameters.
These two parameters, namely two velocities, describe a spin configuration, deviating from
homogeneous magnetization. The centre of inhomogeneity moves with a constant velocity,
while the shape of the soliton (the direction of magnetization in its centre) also changes
with another velocity. This feature does not appear in the single soliton solutions of other
nonlinear equations solved. Hence it is expected that the method can be developed in detail
to find multi-soliton solutions. In [4], a system of linear algebraic equations was derived
that yields multi-soliton solutions, in principle, but was, in general, hard to solve explicitly.

It is easily seen that the structure of these linear algebraic equations is the same as that
of the equations of a Riemann matrix with poles in the method of the Riemann problem
with zeros [5, 6]. As is known, the equations of a Riemann matrix with poles were merely
solved for the simplest cases of one or two poles but not for a general number of poles.

In this paper, a particular procedure that leads to explicit solutions of the Riemann
matrix with poles is developed and is applied to the L-L equation with an easy plane. It is
given that these formulae are sufficient for calculation of multi-soliton solutions of the L—L
equation with an easy plane if they are required.

The equations of a Riemann matrix with poles are the same as those deduced from
the expansion of the partial fraction of the transformation matrix, although their starting
points are different from each other. In this paper, the equations are simply derived from
the later point of view. A procedure based upon a formula of the inverse of a particular
Q-matrix is developed, and, by means of it, solutions of the equations of a Riemann matrix
with poles are expressed in forms which can be evaluated explicitly using the well known
Binet—Cauchy formula. The L-L equation for a spin chain with an easy plane is then solved
explicitly using this procedure.
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332 Hong Yue and Nian-Ning Huang
2. The L-L equation with an easy plane

The L-L equation for a spin chain with an easy plane is

S;=8Sx8,+8SxJS IS|=1 Q)
where the diagonal matrixX
J = diag(0, 0, —16p?) 2)

characterizes the easy plane, the 12-plane. ldésea positive constant and 16 is introduced
for latter convenience. Its Lax pair is given by Sklyanin [7] by setting the present

L = —ijuS303 — iA(S101 + S202) (3
M = i2)28303 4 i22 11 (S101 + S202) — iA(S2S3: — S382:)01

—IA(8381 — S183:)02 — i10(S182: — S2810)03 (4)
where two parameterg and A satisfy

n? =%+ 4p2. ®)

If one is taken as an independent parameter, the other is its double-valued function. To
avoid complexity due to this, one can introduce an affine parangeter follows:

w=¢+p¢t A=¢—pih (6)

However, as we shall see later, in the development of the present method, it is reasonable
to introduce an auxiliary parameteras follows:

k+ k-t
H—me )\—me- (7)
The Lax equations are
0x F'(k) = L(k)F (k) 0, F (k) = M (k) F (k) (8)

from now on we shall drop the argumentsand unless necessary.
Since the 12-plane is the easy plane, the asymptotic spin must lie on it, we can choose
it along the 1-axis,

§=5=@1,00 9)

which is the simplest solution of (1). To the spin along the 1l-axis the corresponding Jost
solution of (8) is then

Fo(k) = efi)h(xfzut)al- (10)

3. Transformation matrix

We define the Jost solutiorfgy (k) by a transformation matrix y (k),
Fy(k) = Gy (k) Fo(k) (11)

whereG y (k) is meromorphic, that is, it may have poles, but has no other singularity. The
meaning of the suffixV shall be explained in the following. The properties®f (k) and
the relation to the solutioy of (1) will be determined.

It is obvious that

p=k) =pk) A=k =—rk) (12)
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and then
L(—k) = o1L(k)o1 M(—k) = o.M (k)or. (13)
From (10) we can see that
Fo(—k) = 01Fo(k)o1. (14)
Hence we have
Fy(—k) =o1Fy(kjor  Gn(=k) = 01Gy(k)or. (15)
Suppose that, is a simple pole ofs y (k), then from (15)—k, is also a pole ofG y (k).
We denote it a%k; = —k,. The suffix N means thatG y (k) has N pairs of simple poles.
We can write
Gy (k) = Ky Hy (k) (16)
where
Hy(k) =1 — = A, 17
MOENES ; r— (17)
and Ky is a 2x 2 matrix independent of to be determined. We agree on
knin if n <N
ki = N . } (18)
kN if n > N.

Since in the limit of|k| — oo, L(k) and M (k) do not tend to zero, and thusy (k) A 1.
HenceKy differs from 7. From (15) we have

Ky = 01K yo1 Hy(—k) = o1Hy (k)o1 (19)
and then
Ay = —Ulznal. (20)

From (3), (4) and (10) we can see that the Lax pair has anti-Hermitian evolution
properties,

Liky=-L'k) M@k =—-M(k (21)
and

Fytk) = F) (k). (22)
Hence we have

Fytk) = Fl (k) Gy k) = Gl (k). (23)
From (16) we obtain

Gyrk) = Hyt() Kyt (24)
On account of the second equation of (23), we obtain

Kyt =K}, (25)
and

Hy (k) = H) (k) (26)
where

_ Noooq
H;,(k)zl—i—;k_lznAl. (27)
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4. Equations of the Riemann matrix with poles

Since
Gr(G k) = Gy Gy (k) =1 (28)
it has no poles, i.e.
AyGyt(ky) =0 (29)
ie.
An<l+22N 1 AT)zo. (30)
=1 kn —kn "

One can write
6l‘l
An = ()/ ) (,Bnan)~ (31)

Substituting it into (30) we obtain a system of linear equations,

2N
1 - _
n — (BuBm + @8, =0 32
IB n;kﬂ_km(ﬂﬁ 050!) ( )
and
2N 1 B
@ + Z k 2 (BnBm + 0, 0) Y = 0. (33)
m=1"n " "m

Solving these equations one can expigsandy,, in terms of3, andw,. However, except

at low values ofN, it is hard to obtain explicit solutions. These equations are some of the
Riemann matrix with poles. Hence the transformation matrix defined in (11) can be referred
to as a Riemann matrix with poles. We shall develop a special procedure to give explicit
solutions for the present case but also suitable for some other cases.

5. Determination of 3,, and «,

For particularN, the Lax pairsL(k) and M (k) are expressed aby (k) and My (k), we
have

0y Fn (k) = Ly (k) Fy (k). (34)
In the limit ask — k,, on account of (11) we have

O {KnAnFo(kn)} = L (kn){KnAnFo(kn)}. (35)
Since A, is degenerate, the factor

(Bnotn) Fo(ky) (36)
can be taken to be independentxof From

0 Fn (k) = My (k) Fy (k) (37)
a similar procedure yields that the factor (36) is also independent ldeénce we find

(Bacta) = (ba D Fy H(ky) (38)

whereb, is a constant.
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From (20) we have

Aj=— (g) @)

Ay = (‘Sy ) (Bicta).

We can agree on
:Bﬁ = I&n oy = Iﬂn (39)

and also

and thus

5,5 = I)7n Vi = i n b;l = En (40)

6. Determination of K

From (19) we have

(Kn)11 = (Kn)22 (Kn)21 = (K )12 (41)
(25) yields
1 ( (Kn)22 _(KN)lZ) _ ((KN)ll (KN)21> (42)
detKy \ —(Kn)21  (Kn)u1 (Kn)iz (Kn)22 )

Comparing these two equations leads to the unimodulk pfand
Ky = g% (43)

whereQy is real and may depend onand¢. From (19) and (25) similar relations hold for
Hy(0), and henceHy (0) is also unimodule and diagonal. Similarly, (25) leadsHg(1)
and Gy (1) are unimodule and

Hy(D11= Hy(D2 Hy(Dp1=—Hy(D12 (44)
Gy(D11=GyD22 Gy(D21=—-GyD12. (45)
From (34) we have
Gnx(k) + Gy (k)Lo(k) = Ly (k)G (k). (46)
As k — 1, we obtain
(Sy - 0) = Gy(Dor1GY (1) (47)

where Sy is the solution of (1) corresponding to the Jost solutign(k). Similarly, as
k — —1, we have

—03(Sy - )03 = Gy (—1)01G (—1) (48)

which is equivalent to (34) on account of the second equation of (15).
We now determineK . From (38), ask — oo, we obtain

(KN} = —i2p(Sy)303{Kn} (49)
ask — 0, we have

I {KnHy(0)} =i20(Sy)303{ Ky Hy(0)}. (50)
These two equations lead to

Ky = Hy(0)"%2, (51)

From (43),Qy is an additional rotation angle around the 3-axis which does not effect the
value of Ss.
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7. Expressions for the spin components
Noticing (45) and (51), from (47) we obtain

Sn)3=—-GnyD)11:Gnv(D)21 — Gy(D11Gn (D21
(S\)1—i(Sn)2 = —(Gy(Da1)* + (Gn(D1)?

or

(Sn)z3 = —Hn(1D)11Hy ()2, — Hy(1)21Hy ()11
(Sw)1 — 1(Sn)2 = (Kn) 34— (Hy (D212 + (Hy (D103,

(55) is

(Sw)1 = 1(Sv)2 = Hy(0)13{—(Hy (D)21)? + (Hy (D10

Hence it is necessary to finly (1) and Hy (0).
From (17) we have

Hy (D11 = 1+Z 1% b
J
2N
Hy(1)1 =
N (D21 ; 1—& Vi B;

Hy(0)11=1- Z ;51,31

=1k

and these must be evaluated.
In what follows it is convenient to introduce

Pn = _ikn-

From (32) and (33) we have

M

2

= P + P

(ﬂm,Bn + aman)gm - Iﬁl’l

and

M

2

— pm+ l’l

(ﬁmﬁn + aman)ym - Ial’t

Here we writeM = 2N. Then instead of (57)—(59), what we need to evaluate is

JRELA 1
Hy(po)11 =1+ Z —0;B; Hy(po)or =i Z Vi B;

‘= potp; po+ pj

where pg = —ikg, ko = 1, or 0.

(52)
(53)

(54)
(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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8. Solutions of a Riemann matrix with poles

We write introducing diagonal matricé€g), etc, by

(B) = diag(B1, B2, - - -, Bu) (64)
and row matriceg, etc, by

B=(BB2...Bu) (65)
then (61) and (62) can be rewritten in matrix form,

S(B+C)=ip y(B+C) =ia (66)
where

B =(B)QO(B) C=@oW@ (67)
and the matrixQ is given in (A.1). Referring to (A.9), we have

Cl=(@ o o@ @™’ (68)

where(a) is given by (A.4) and (A.8).
The formulae can be simplified if

cl=B" (69)
By comparing (68) and (67) this can be achieved by setting

Buoty = a,* (70)
wherea, = —ia,. Here we should note that, from (A.5) and (39), we have

a; = a, Bicii = —PButn. (71)

Hence on the right-hand side of (70) we must chogskinstead ofa; .

As we have seen, since only the proportiongpfand«,, has meaning, we can choose
B, anda, to satisfy (70). Hence multiplying the first one of (66) By from the right, we
have

8(I1 + BB") =iBB". (72)
Then (63) is rewritten as

Hy(po)u=1+i8"T  Hy(po)ar=iyp" (73)
where

, 1

B = ﬁ0+pjl3i- (74)
By using (72) we obtain
Hy(po)u=1—BBT(I + BB " =1-Tr((I + BB") ' BBT) (75)
and then

det(/ + BBT — pTBBT)
det/ + BBT)

Hy(po)11 = (76)

We note that

> St T
i &n (BT)nm =i &nlgmi_ﬂm (77)
n=1 n=1 Dm + Dn
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Referring to (70) and (A.12) it is equal to
: Y11
=1 i@y pm + P

Multiplying the second equation of (66) g™ from the right, and using (78) we obtain
y(I + BB") = B. (79)
Hence
Hy(po)ar=ip(I + BBT)™'pT =iTr{(/ + BB") 8" B} (80)

namely

(81)

_ . [det/ + BBT + BTB)
Hy(po)21 =1 { detl 1+ BB") - 1} .

It is known that expressions (76) and (81) can be evaluated by the known Binet—Cauchy
formula.

9. Binet—Cauchy formula

The denominator of (76) and (81) is now denotedWy, that is

M
Wy =det/+BB)=1+Y > >

r=11<ni<---<n, <M 1<mqi<---<m, <M

xW(nq,no,...,n,,mq, mo, ..., m,) (82)
where
W(n, no, ..., n,.;mq, mg_, ...,m;) = By, no,...,n.;my,mo, ..., m,)2
=11 (pﬁ_?i)z [T o= 2 = f)” (83)
n,m n<n’,m<m

and wheren, n’, m andm’ satisfy (A.3).
The numerator of (76) can be rewritten as

V(po) =det/ + BB" — B BB") = det/ + B'B") (84)
where
B' =B - p"B. (85)
From (74) we have
1 po — _m 3
(B/)nm = /311 Po P :Bm' (86)

Pn + ﬁm Pn + ﬁO
Hence we obtain

M
Vi(po) =detl + BBH =145 >

r=11<ny < <n, <M 1<my<---<m, <M

xV(ni,no, ...,n.,my, mo, ..., m,) (87)
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where
V(ng,no,...,n5my, mo, ..., m;)
=B'(n1,....,n.;my,...,m)(na, ..., 0 ma, ..., m.)
27p2
SIS PP T (e )2 — F? (88)

nm Pn + po (pn + pm)2 n<n',m<m’

and wheren, n’, m andm’ satisfy (A.3).
The numerator of (81) is

Un(po) = i{det( + BBT + 878) —detl + BB")}. (89)
We can write

[+BB +B78=1+BB" (90)
where B’ and B are M x (M + 1) matrices,

Bjo=8,  Bw=p.  B,=Bwm=Bwm nm=12.. M. (91)

By means of the Binet—Cauchy formula, the expansion involves

1<ni<ng<---<n, <M 0<mi<mo<---<m, <M
V/ . D .
xB'(n1,...,n.;mq,...,m)B(ny, ..., nmq, ..., m). (92)

It consists of two parts: one ig; > 1, the othemny = 0. The first part is just the same as
det/ + BBT). Hence we obtain

M
Uv(po) =iy Y Y. Umang...,n;0my,....m) (93)
r=11<ni<no<---<n, <M 1<mp<---<m, <M
where
U(ny,na,...,n;0,mp, ..., m,)
=B'(ni,na...,n:0,ma, ..., m)B(ny,na,....,n;0,mo, ..., m) (94)
and
B'(ny,nz,...,n,;0,mo, ..., m)
Po—Pn_ BuBm o
= ]_[ 2 T (e = o) (B — D) (95)

n,m p”+p0p”+pmn<n’,m<m’

B(na,ng, ...,y 0ma, . om) =] [ - Bubr [T @=pP)Bn— - (96)

n,m Pn + pm n<n',m<m’
The subscripts satisfy

n,n €{ny,na, ..., n} m,m’ € {mo,...,m}. (97)
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10. Formal expressions of solutions

Equation (10) can be rewritten as

Fo(x, k) = Ue k=251 (98)
where

U =1 —i(o1+ 02+ 03)}. (99)
We can write

(b, DU ~ (b, 1) (100)
where~ is a proportional symbol. From (38) we can see that

e~ (5 2 (T 34) (101)
since the last determinant is proportionaltio®. Here

fE=bfok)?  folk,) = 020, (102)

Hence we have
@ _ fn + ifn_l — 2

= =q-. 103
o, fn _ | fn,l q” ( )
From equation (70) together with (103) we obtain
Bu=(a)2q0 0w =(a) 7, " (104)
Hence (83), (88) and (94) are expressed explicitly
W(ng, no, ..., np5me, ma, ..., m;)
1-—1 q47q; 2 2
= a, (’_11; P Pn— ) (Pm — Pw') 105
!:[ (pn + pm)z n<nl:n[<m/ ( )
V(ny, no,...,nmy,mo, ..., m;)
- - 222
_]___]_pO — Pm qnqlfn 2/ = -~ 2
= an am — — (pn - pn’) (pm - pm’) (106)
!;[ Pn+ Do (Pn + Pm)? n<,H<m,
and wheren, n’, m andm’ satisfy (A.3).
Uy, ng, ...,n.;0,mo, ..., m,)
= = 22
~1-—-1P0— Pm 4,9y 2, = N
= a, a, . p (Prn — Pn) (P — D) (107)
!_m[ Pn+ Do (Pn + Pm)? n<n1:n[<m,

wheren, n’, m andm’ satisfy (97).
In order to express explicitly the final expressions, we note (34), (35) and (104) and

g7 = g, 1. Thus (73) are expressed as
Un(=)

Vn (po) L
W Hy (=121 = Wy (108)

Hy(po)11=
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11. Explicit expressions of a single soliton solution

In the case ofV = 1, we havek, = —k1, p» = p1 and

P iPl—ﬁl 1 Gy
1= — — —— = —d>o.
p1+ P12p1

From (82)—(97), we have

—L 2_ > 2\~ 2 -2
W1 = 1_ﬁ1|2(P1|Q1| p1lq1l?)(p1lq1l” = pilgal™).

|p
4 ) _
Vi(0) = ————— (palqal® — palqal ™).
|p1— pil

Vi(—i) = L 4 (p1lg1? = pilgl™)
B T a1y [pr— po PRI T P

x{(L+ PP pilgal® + A+ p?) pilgsl ™2
and

Ur(—i) =i . —— (P — pH{—p1gt + P1d; )

! (pr+D)(pr+1) |pr— po2 1~ PP T

We write

gn=futif, ! hy = fo—if,*
then we have

(p1lg1? — prlhal®)(Pilgal? — palhal?)

1= -
(Ip1 — P11 |g1l?|h1|?
4

Vi(0) = — _ (p1lg1l® — pilh1?)?
: (p1— priDIgaPag2 PHEH — Pl
Vy(—i) = 1 4
' (p1+ 1) (14D (Ip1 — prl?)gal2lha)?
x(p1lg1l® — pilhiH{=A+ pD pilgl? + A + pD palh1l?}
and
) . 4
Ui(—i) =

I (p1+D(P1+1) (Ip1 — p11?g1l?|hal?

x(p5 — P (—palgal® + palhal?)hags.
Substituting these equalities into (108) we obtain
_ pilgl® = palhal?

Hy(0)y = — 228t = Pl
= T g1 — palhal?
My = — 1 (A + PP palgrl? — L+ p?)palhal?)
(pr+1)(pL+1) palgal? — palhal?
. ] 1 (2_—2)]71
Hy(=i)z1 = e s

i __._ .
(p1+D(p1+1) p1lgil® — palhal?
We write

f2=e 1™

Dy = 2ix — 20y ) — k1 u Dt + @1 O1 = 27 (x — v1f — x1)

K/
v =y + ju/{
1

341

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)
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where superscriptsaand” indicate the real and the imaginary parts of a quantity, respectively:
p1=—iky pL=k( pi = —ki.
We then obtain
(4p?/11+ p3P) + (/i) Sir @1
coslf ©1 + (p2/py?) sir’ @y
(S1)2 = [2(4p7 /|11 + piI?) sinh©1 cos®s + 2(py/ pf)
x(1— |p1l*/11+ p?|?) cosh®y + sind4]/[cost @1 + (pF/py?) sir? &4] 72

(S1=1-2 (123)

(124)
(S1)3 = [2(2p} (L — [p1>)/11+ p??) cosh®; cos®; — 2(2p (L + |p11?)/piI11 + p3I1?)
xsinh@1 sin®1]/[costt ©1 + (p2/ p;2) sirf d4] 72, (125)

These are the expressions of the one-soliton solution for a spin chain with an easy plane
which have been found recently [3,4]. They cannot be obviously factorized in forms of
separated variables even in moving coordinates. Hence, it is hopeless to solve the Landau—
Lifshitz equation for a spin chain with an easy plane by means of separating variables.

For the limit asp — 0, namely, the anisotropy vanishes, it is convenient to use an
auxiliary parametet in (6). The parametet is related with it as

k—ip=>TP (126)
{—=p

One can then express the expression of the one-soliton solution in terms of the parameter
¢. We restrictz; in the upper half plane of complexand|i| > p. Then from (108), we
find

" 2 2

P=2p Elpzl2 1= |Ii‘11| - /o[|)2 (420

wheree = %1 correspond tg; < 0 andp; > 0, respectively. We finally obtain
"2 2+42”2 2 _ 22$in2d>

o=t- Z(Eias/r';(lall)+ (Etpgz?z//(ﬂ“il - pp2>l>)sin2 5 (429
(S1)2 = [2(5,%/1611%) sinh®1 cosdy — 25121 (|21 + p) /15112161l — p?))

xcosh@; sin®;]/[cosit ©1 + (4p%¢,%/(1¢1]? — p?)?) sir? &4] 71 (129)
(S1)3 = [2(¢1¢1/161/%) cosh®1 cos®1 + 2(¢, (121 + pD) /1¢al?(121) = pP))

xsinh@1 sin®4]/[cosit O1 + (4p%¢,%/(1¢1]2 — p?)?) sird d4] 2. (130)

12. Concluding remark

To show the expected asymptotic behaviours of the multi-soliton solutions in the limit of
t — o0, it is convenient to rotate the 1-axis to the 3-axis, as it has been discussed in a
previous paper [4].

In the present work, an appropriate procedure is developed for solving the Riemann
matrix with poles and it has been used to give explicit expressions of the multi-soliton
solutions to the L—-L equation for a spin chain with an easy plane. It is obvious that the
same procedure can be used for other nonlinear equations if their Lax pairg 2maatrices
with anti-Hermitian evolution properties.
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Appendix
We write
1
Qnmzi_ n,me{l,z,...,M}. (A.l)
Pn+ Pm

Its minor of order ofr, Q,(n1,...,n,; mq,...,m,), is a determinant of a submatrix ¢f
by taking the remainingns, ..., n,)th columns andmi, ..., m,)th rows. From (A.1) we
can find

1
Qr(nla sy Rpsmy, L, mr) = 1_[ 1_[ (pn - pn’)(ﬁm - ﬁm’) (A2)

nm Pn + Pm n<n',m<m’

where
n,n €{ng,...,n} m,m’ € {mq,...,m}. (A.3)
Hence,Q, is also obtained by setting= M. In terms ofp,,, we have

1 Pj — Pn

_ iy (A.4)
Pj+ Pj gzj Pit Pn

a; =la; =

QM_l(j; ) denotes a minor of order d¥/, that is a determinant of a submatrix ¢f by
deleting thejth column and théth row. Its expression is similar to the right-hand side of
(A.2), but replacing (A.3) with

m,m #j n,n #I. (A.5)
Elements ofQ~! are given by

0 _1(s 1
(0, = (~pyi+ Quali D (A6)
Owm
We have
(N =a;'Qua;t (A7)
Introducing a diagonal matrix
(a) = diaglai, ay, ..., ay) (A.8)
(A.7) can be rewritten in matrix form,
o'=@ 0@ (A.9)
We write
Lp-p
a(p) = . (A.10)
w1 Pt Pn
a(p) can be expanded in partial fraction
M
a(p) =1— 1 1 (A.11)

 p+ pun
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Settingp = p.., the left-hand side vanishes obviously, and hence

M
11
Y o=l (A.12)

pm +pﬂ al’l

n=1
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