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Soliton solutions for a spin chain with an easy plane and
the method of Riemann problem with zeros

Hong Yue and Nian-Ning Huang
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

Received 8 July 1996

Abstract. With the procedure to solve explicitly the equations of the Riemann matrix with
poles, multi-soliton solutions to the Landau–Lifshitz (L–L) equation for a spin chain with an
easy plane are found formally, and a single soliton solution is given explicitly.

1. Introduction

The Landau–Lifshitz equation for a spin chain with an easy plane describes, for example, the
properties of CsNiF3 and has attracted the attention of many authors in the past two decades
[1, 2], but has not been solved exactly by any means attempted [3]. Recently, an exact single
soliton solution to the equation by means of the method of the Darboux transformation matrix
has been reported [3]. The single soliton solution essentially depends on two parameters.
These two parameters, namely two velocities, describe a spin configuration, deviating from
homogeneous magnetization. The centre of inhomogeneity moves with a constant velocity,
while the shape of the soliton (the direction of magnetization in its centre) also changes
with another velocity. This feature does not appear in the single soliton solutions of other
nonlinear equations solved. Hence it is expected that the method can be developed in detail
to find multi-soliton solutions. In [4], a system of linear algebraic equations was derived
that yields multi-soliton solutions, in principle, but was, in general, hard to solve explicitly.

It is easily seen that the structure of these linear algebraic equations is the same as that
of the equations of a Riemann matrix with poles in the method of the Riemann problem
with zeros [5, 6]. As is known, the equations of a Riemann matrix with poles were merely
solved for the simplest cases of one or two poles but not for a general number of poles.

In this paper, a particular procedure that leads to explicit solutions of the Riemann
matrix with poles is developed and is applied to the L–L equation with an easy plane. It is
given that these formulae are sufficient for calculation of multi-soliton solutions of the L–L
equation with an easy plane if they are required.

The equations of a Riemann matrix with poles are the same as those deduced from
the expansion of the partial fraction of the transformation matrix, although their starting
points are different from each other. In this paper, the equations are simply derived from
the later point of view. A procedure based upon a formula of the inverse of a particular
Q-matrix is developed, and, by means of it, solutions of the equations of a Riemann matrix
with poles are expressed in forms which can be evaluated explicitly using the well known
Binet–Cauchy formula. The L–L equation for a spin chain with an easy plane is then solved
explicitly using this procedure.
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2. The L–L equation with an easy plane

The L–L equation for a spin chain with an easy plane is

St = S × Sxx + S × JS |S| = 1 (1)

where the diagonal matrixJ

J = diag(0, 0, −16ρ2) (2)

characterizes the easy plane, the 12-plane. Hereρ is a positive constant and 16 is introduced
for latter convenience. Its Lax pair is given by Sklyanin [7] by setting the presentJ ,

L = −iµS3σ3 − iλ(S1σ1 + S2σ2) (3)

M = i2λ2S3σ3 + i2λµ(S1σ1 + S2σ2) − iλ(S2S3x − S3S2x)σ1

−iλ(S3S1x − S1S3x)σ2 − iµ(S1S2x − S2S1x)σ3 (4)

where two parametersµ andλ satisfy

µ2 = λ2 + 4ρ2. (5)

If one is taken as an independent parameter, the other is its double-valued function. To
avoid complexity due to this, one can introduce an affine parameterζ as follows:

µ = ζ + ρ2ζ−1 λ = ζ − ρ2ζ−1. (6)

However, as we shall see later, in the development of the present method, it is reasonable
to introduce an auxiliary parameterk as follows:

µ = 2ρ
k + k−1

k − k−1
λ = 2ρ

2

k − k−1
. (7)

The Lax equations are

∂xF (k) = L(k)F (k) ∂tF (k) = M(k)F (k) (8)

from now on we shall drop the argumentsx and t unless necessary.
Since the 12-plane is the easy plane, the asymptotic spin must lie on it, we can choose

it along the 1-axis,

S = S0 = (1, 0, 0) (9)

which is the simplest solution of (1). To the spin along the 1-axis the corresponding Jost
solution of (8) is then

F0(k) = e−iλ(x−2µt)σ1. (10)

3. Transformation matrix

We define the Jost solutionsFN(k) by a transformation matrixGN(k),

FN(k) = GN(k)F0(k) (11)

whereGN(k) is meromorphic, that is, it may have poles, but has no other singularity. The
meaning of the suffixN shall be explained in the following. The properties ofGN(k) and
the relation to the solutionS of (1) will be determined.

It is obvious that

µ(−k̄) = µ(k) λ(−k̄) = −λ(k) (12)
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and then

L(−k̄) = σ1L(k)σ1 M(−k̄) = σ1M(k)σ1. (13)

From (10) we can see that

F0(−k̄) = σ1F0(k)σ1. (14)

Hence we have

FN(−k̄) = σ1FN(k)σ1 GN(−k̄) = σ1GN(k)σ1. (15)

Suppose thatkn is a simple pole ofGN(k), then from (15)−k̄n is also a pole ofGN(k).
We denote it askň = −k̄n. The suffix N means thatGN(k) hasN pairs of simple poles.
We can write

GN(k) = KNHN(k) (16)

where

HN(k) = I +
2N∑
n=1

1

k − kn

An (17)

andKN is a 2× 2 matrix independent ofk to be determined. We agree on

kň =
{

kN+n if n 6 N

kn−N if n > N .
(18)

Since in the limit of|k| → ∞, L(k) andM(k) do not tend to zero, and thusGN(k) 6→ I.

HenceKN differs from I . From (15) we have

KN = σ1KNσ1 HN(−k̄) = σ1HN(k)σ1 (19)

and then

Aň = −σ1Anσ1. (20)

From (3), (4) and (10) we can see that the Lax pair has anti-Hermitian evolution
properties,

L(k) = −L†(k̄) M(k) = −M†(k̄) (21)

and

F−1
0 (k) = F

†
0(k̄). (22)

Hence we have

F−1
N (k) = F

†
N(k̄) G−1

N (k) = G
†
N(k̄). (23)

From (16) we obtain

G−1
N (k) = H−1

N (k)K−1
N . (24)

On account of the second equation of (23), we obtain

K−1
N = K

†
N (25)

and

H−1
N (k) = H

†
N(k̄) (26)

where

H
†
N(k̄) = I +

N∑
n=1

1

k − k̄n

A†
n. (27)
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4. Equations of the Riemann matrix with poles

Since

GN(k)G−1
N (k) = G−1

N (k)GN(k) = I (28)

it has no poles, i.e.

AnG
−1
N (kn) = 0 (29)

i.e.

An

(
I +

2N∑
m=1

1

kn − k̄m

A†
m

)
= 0. (30)

One can write

An =
(

δn

γn

)
(βnαn). (31)

Substituting it into (30) we obtain a system of linear equations,

βn +
2N∑

m=1

1

kn − k̄m

(βnβ̄m + αnᾱm)δ̄m = 0 (32)

and

αn +
2N∑

m=1

1

kn − k̄m

(βnβ̄m + αnᾱm)γ̄m = 0. (33)

Solving these equations one can expressδm andγm in terms ofβn andαn. However, except
at low values ofN , it is hard to obtain explicit solutions. These equations are some of the
Riemann matrix with poles. Hence the transformation matrix defined in (11) can be referred
to as a Riemann matrix with poles. We shall develop a special procedure to give explicit
solutions for the present case but also suitable for some other cases.

5. Determination of βn and αn

For particularN , the Lax pairsL(k) and M(k) are expressed asLN(k) and MN(k), we
have

∂xFN(k) = LN(k)FN(k). (34)

In the limit ask → kn, on account of (11) we have

∂x{KNAnF0(kn)} = LN(kn){KNAnF0(kn)}. (35)

SinceAn is degenerate, the factor

(βnαn)F0(kn) (36)

can be taken to be independent ofx. From

∂tFN(k) = MN(k)FN(k) (37)

a similar procedure yields that the factor (36) is also independent oft . Hence we find

(βnαn) = (bn 1)F−1
0 (kn) (38)

wherebn is a constant.
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From (20) we have

Aň = −
(

γ̄n

δ̄n

)
(ᾱnβ̄n)

and also

Aň =
(

δň

γň

)
(βňαň).

We can agree on

βň = iᾱn αň = iβ̄n (39)

and thus

δň = iγ̄n γň = iδ̄n bň = b̄n. (40)

6. Determination of KN

From (19) we have

(KN)11 = (KN)22 (KN)21 = (KN)12. (41)

(25) yields

1

detKN

(
(KN)22 −(KN)12

−(KN)21 (KN)11

)
=

(
(KN)11 (KN)21

(KN)12 (KN)22

)
. (42)

Comparing these two equations leads to the unimodule ofKN and

KN = ei 1
2 �N σ3 (43)

where�N is real and may depend onx andt . From (19) and (25) similar relations hold for
HN(0), and henceHN(0) is also unimodule and diagonal. Similarly, (25) leads toHN(1)

andGN(1) are unimodule and

HN(1)11 = HN(1)22 HN(1)21 = −HN(1)12 (44)

GN(1)11 = GN(1)22 GN(1)21 = −GN(1)12. (45)

From (34) we have

GNx(k) + GN(k)L0(k) = LN(k)GN(k). (46)

As k → 1, we obtain

(SN · σ) = GN(1)σ1G
†
N(1) (47)

whereSN is the solution of (1) corresponding to the Jost solutionFN(k). Similarly, as
k → −1, we have

−σ3(SN · σ)σ3 = GN(−1)σ1G
†
N(−1) (48)

which is equivalent to (34) on account of the second equation of (15).
We now determineKN . From (38), ask → ∞, we obtain

∂x{KN } = −i2ρ(SN)3σ3{KN } (49)

ask → 0, we have

∂x{KNHN(0)} = i2ρ(SN)3σ3{KNHN(0)}. (50)

These two equations lead to

KN = HN(0)−1/2. (51)

From (43),�N is an additional rotation angle around the 3-axis which does not effect the
value ofS3.



336 Hong Yue and Nian-Ning Huang

7. Expressions for the spin components

Noticing (45) and (51), from (47) we obtain

(SN)3 = −GN(1)11GN(1)21 − GN(1)11GN(1)21 (52)

(SN)1 − i(SN)2 = −(
GN(1)21

)2 + (
GN(1)11

)2
(53)

or

(SN)3 = −HN(1)11HN(1)21 − HN(1)21HN(1)11 (54)

(SN)1 − i(SN)2 = (KN)2
11{−(HN(1)21)

2 + (HN(1)11)
2}. (55)

(55) is

(SN)1 − i(SN)2 = HN(0)11{−(HN(1)21)
2 + (HN(1)11)

2}. (56)

Hence it is necessary to findHN(1) andHN(0).
From (17) we have

HN(1)11 = 1 +
2N∑
j=1

1

1 − kj

δjβj (57)

HN(1)21 =
2N∑
j=1

1

1 − kj

γjβj (58)

HN(0)11 = 1 −
2N∑
j=1

1

kj

δjβj (59)

and these must be evaluated.
In what follows it is convenient to introduce

pn = −ikn. (60)

From (32) and (33) we have

M∑
m=1

1

pm + p̄n

(βmβ̄n + αmᾱn)δm = iβ̄n. (61)

and

M∑
m=1

1

pm + p̄n

(βmβ̄n + αmᾱn)γm = iᾱn. (62)

Here we writeM = 2N . Then instead of (57)–(59), what we need to evaluate is

HN(p0)11 = 1 + i
M∑

j=1

1

p̄0 + pj

δjβj HN(p0)21 = i
M∑

j=1

1

p̄0 + pj

γjβj (63)

wherep0 = −ik0, k0 = 1, or 0.
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8. Solutions of a Riemann matrix with poles

We write introducing diagonal matrices(β), etc, by

(β) = diag(β1, β2, . . . , βM) (64)

and row matricesβ, etc, by

β = (β1β2 . . . βM) (65)

then (61) and (62) can be rewritten in matrix form,

δ(B + C) = iβ̄ γ (B + C) = iᾱ (66)

where

B = (β)Q(β̄) C = (α)Q(ᾱ) (67)

and the matrixQ is given in (A.1). Referring to (A.9), we have

C−1 = ((α)−1(a)−1Q(ā)−1(ᾱ)−1)T (68)

where(a) is given by (A.4) and (A.8).
The formulae can be simplified if

C−1 = BT. (69)

By comparing (68) and (67) this can be achieved by setting

βnαn = a−1
n (70)

wherean = −ian. Here we should note that, from (A.5) and (39), we have

aň = ān βňαň = −β̄nᾱn. (71)

Hence on the right-hand side of (70) we must choosea−1
n instead ofa−1

n .
As we have seen, since only the proportion ofβn andαn has meaning, we can choose

βn andαn to satisfy (70). Hence multiplying the first one of (66) byBT from the right, we
have

δ(I + BBT) = iβ̄BT. (72)

Then (63) is rewritten as

HN(p0)11 = 1 + iδβ ′T HN(p0)21 = iγβ ′T (73)

where

β ′
j = 1

p̄0 + pj

βj . (74)

By using (72) we obtain

HN(p0)11 = 1 − β̄BT(I + BBT)−1β ′T = 1 − Tr{(I + BBT)−1β ′Tβ̄BT} (75)

and then

HN(p0)11 = det(I + BBT − β ′Tβ̄BT)

det(I + BBT)
. (76)

We note that

i
M∑

n=1

ᾱn(B
T)nm = i

M∑
n=1

ᾱnβm

1

pm + p̄n

β̄n. (77)
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Referring to (70) and (A.12) it is equal to

i
M∑

n=1

1

iān

1

pm + p̄n

βm = βm. (78)

Multiplying the second equation of (66) byBT from the right, and using (78) we obtain

γ (I + BBT) = β. (79)

Hence

HN(p0)21 = iβ(I + BBT)−1β ′T = iTr{(I + BBT)−1β ′Tβ} (80)

namely

HN(p0)21 = i

{
det(I + BBT + β ′Tβ)

det(I + BBT)
− 1

}
. (81)

It is known that expressions (76) and (81) can be evaluated by the known Binet–Cauchy
formula.

9. Binet–Cauchy formula

The denominator of (76) and (81) is now denoted byWN , that is

WN = det(I + BBT) = 1 +
M∑

r=1

∑
16n1<···<nr6M

∑
16m1<···<mr6M

×W(n1, n2, . . . , nr; m1, m2, . . . , mr) (82)

where

W(n1, n2, . . . , nr; m1, m2, . . . , mr) = B(n1, n2, . . . , nr; m1, m2, . . . , mr)
2

=
∏
n,m

β2
nβ̄

2
m

(pn + p̄m)2

∏
n<n′,m<m′

(pn − pn′)2(p̄m − p̄m′)2 (83)

and wheren, n′, m andm′ satisfy (A.3).
The numerator of (76) can be rewritten as

VN(p0) = det(I + BBT − β ′Tβ̄BT) = det(I + B ′BT) (84)

where

B ′ = B − β ′Tβ̄. (85)

From (74) we have

(B ′)nm = βn

1

pn + p̄m

p̄0 − p̄m

pn + p̄0
β̄m. (86)

Hence we obtain

VN(p0) = det(I + B ′BT) = 1 +
M∑

r=1

∑
16n1<···<nr6M

∑
16m1<···<mr6M

×V (n1, n2, . . . , nr; m1, m2, . . . , mr) (87)
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where

V (n1, n2, . . . , nr; m1, m2, . . . , mr)

= B ′(n1, . . . , nr; m1, . . . , mr)(n1, . . . , nr; m1, . . . , mr)

=
∏
n,m

p̄0 − p̄m

pn + p̄0

β2
nβ̄

2
m

(pn + p̄m)2

∏
n<n′,m<m′

(pn − pn′)2(p̄m − k̄m′)2 (88)

and wheren, n′, m andm′ satisfy (A.3).
The numerator of (81) is

UN(p0) = i{det(I + BBT + β ′Tβ) − det(I + BBT)}. (89)

We can write

I + BBT + β ′Tβ = I + B̌ ′B̌T (90)

whereB̌ ′ and B̌ areM × (M + 1) matrices,

B̌ ′
n0 = β ′

n B̌n0 = βn B̌ ′
nm = B̌nm = Bnm n, m = 1, 2, . . . , M. (91)

By means of the Binet–Cauchy formula, the expansion involves∑
16n1<n2<···<nr6M

∑
06m1<m2<···<mr6M

×B̌ ′(n1, . . . , nr; m1, . . . , mr)B̌(n1, . . . , nr; m1, . . . , mr). (92)

It consists of two parts: one ism1 > 1, the otherm1 = 0. The first part is just the same as
det(I + BBT). Hence we obtain

UN(p0) = i
M∑

r=1

∑
16n1<n2<···<nr6M

∑
16m2<···<mr6M

U(n1, n2, . . . , nr; 0, m2, . . . , mr) (93)

where

U(n1, n2, . . . , nr; 0, m2, . . . , mr)

= B̌ ′(n1, n2, . . . , nr; 0, m2, . . . , mr)B̌(n1, n2, . . . , nr; 0, m2, . . . , mr) (94)

and

B̌ ′(n1, n2, . . . , nr; 0, m2, . . . , mr)

=
∏
n,m

p̄0 − p̄m

pn + p̄0

βnβ̄m

pn + p̄m

∏
n<n′,m<m′

(pn − pn′)(p̄m − p̄m′) (95)

B̌(n1, n2, . . . , nr; 0, m2, . . . , mr) =
∏
n,m

βnβ̄m

pn + p̄m

∏
n<n′,m<m′

(pn − pn′)(p̄m − p̄m′). (96)

The subscripts satisfy

n, n′ ∈ {n1, n2, . . . , nr} m, m′ ∈ {m2, . . . , mr}. (97)
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10. Formal expressions of solutions

Equation (10) can be rewritten as

F0(x, k) = Ue−iκ(x−2λt)σ3U−1 (98)

where

U = 1
2{I − i(σ1 + σ2 + σ3)}. (99)

We can write

(bn1)U ∼ (b′
n1) (100)

where∼ is a proportional symbol. From (38) we can see that

(βnαn) ∼
(

fn 0
0 f −1

n

) (
1 1
i −i

)
(101)

since the last determinant is proportional toU−1. Here

f 2
n = b′

nf0(kn)
2 f0(kn) = eiλn(x−2µnt). (102)

Hence we have

βn

αn

= fn + if −1
n

fn − if −1
n

≡ q2
n. (103)

From equation (70) together with (103) we obtain

βn = (an)
− 1

2 qn αn = (an)
− 1

2 q−1
n . (104)

Hence (83), (88) and (94) are expressed explicitly

W(n1, n2, . . . , nr; m1, m2, . . . , mr)

=
∏
n,m

a−1
n ā−1

m

q2
nq̄

2
m

(pn + p̄m)2

∏
n<n′,m<m′

(pn − pn′)2(p̄m − p̄m′)2 (105)

V (n1, n2, . . . , nr; m1, m2, . . . , mr)

=
∏
n,m

a−1
n ā−1

m

p̄0 − p̄m

pn + p̄0

q2
nq̄

2
m

(pn + p̄m)2

∏
n<n′,m<m′

(pn − pn′)2(p̄m − p̄m′)2 (106)

and wheren, n′, m andm′ satisfy (A.3).

U(n1, n2, . . . , nr; 0, m2, . . . , mr)

=
∏
n,m

a−1
n ā−1

m

p̄0 − p̄m

pn + p̄0

q2
nq̄

2
m

(pn + p̄m)2

∏
n<n′,m<m′

(pn − pn′)2(p̄m − p̄m′)2 (107)

wheren, n′, m andm′ satisfy (97).
In order to express explicitly the final expressions, we note (34), (35) and (104) and

qň = q̄−1
n . Thus (73) are expressed as

HN(p0)11 = VN(p0)

WN

HN(−i)21 = UN(−i)

WN

. (108)
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11. Explicit expressions of a single soliton solution

In the case ofN = 1, we havek2 = −k̄1, p2 = p̄1 and

a1 = −i
p1 − p̄1

p1 + p̄1

1

2p1
= −ā2.

From (82)–(97), we have

W1 = 4

|p1 − p̄1|2 (p1|q1|2 − p̄1|q1|2)(p̄1|q1|2 − p1|q1|−2). (109)

V1(0) = − 4

|p1 − p̄1|2 (p̄1|q1|2 − p1|q1|−2)2. (110)

V1(−i) = 1

(p1 + i)(p̄1 + i)

4

|p1 − p̄1|2 (p̄1|q1|2 − p1|q1|−2)

×{(1 + p̄2
1)p1|q1|2 + (1 + p2

1)p̄1|q1|−2} (111)

and

U1(−i) = i
1

(p1 + i)(p̄1 + i)

4

|p1 − p̄1|2 (p̄2
1 − p2

1){−p1q
2
1 + p̄1q̄

−2
1 }. (112)

We write

gn = fn + if −1
n hn = fn − if −1

n (113)

then we have

W1 = 4

(|p1 − p̄1|2)|g1|2|h1|2 (p1|g1|2 − p̄1|h1|2)(p̄1|g1|2 − p1|h1|2) (114)

V1(0) = − 4

(|p1 − p̄1|2)|g1|2|h1|2 (p̄1|g1|2 − p1|h1|2)2 (115)

V1(−i) = 1

(p1 + i)(p̄1 + i)

4

(|p1 − p̄1|2)|g1|2|h1|2
×(p̄1|g1|2 − p1|h1|2){−(1 + p̄2

1)p1|g1|2 + (1 + p2
1)p̄1|h1|2} (116)

and

U1(−i) = i
1

(p1 + i)(p̄1 + i)

4

(|p1 − p̄1|2)|g1|2|h1|2
×(p̄2

1 − p2
1)(−p1|g1|2 + p̄1|h1|2)h̄1g1. (117)

Substituting these equalities into (108) we obtain

H1(0)11 = − p̄1|g1|2 − p1|h1|2
p1|g1|2 − p̄1|h1|2 (118)

H1(−i)11 = − 1

(p1 + i)(p̄1 + i)

{(1 + p̄2
1)p1|g1|2 − (1 + p2

1)p̄1|h1|2}
p1|g1|2 − p̄1|h1|2 (119)

H1(−i)21 = i
1

(p1 + i)(p̄1 + i)

(p2
1 − p̄2

1)h̄1g1

p̄1|g1|2 − p1|h1|2 . (120)

We write

f 2
1 = e−21 ei81 (121)

81 = 2κ ′
1x − 2(κ ′

1µ
′
1 − κ ′′

1µ′′
1)t + 810 21 = 2κ ′′

1 (x − v1t − x1)

v1 = µ′
1 + κ ′

1

κ ′′
1

µ′′
1 (122)
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where superscripts′ and′′ indicate the real and the imaginary parts of a quantity, respectively:

p1 = −ik1 p′
1 = k′′

1 p′′
1 = −k′

1.

We then obtain

(S1)1 = 1 − 2
(4p

′2
1 /|1 + p2

1|2) + (p
′2
1 /p

′′2
1 ) sin2 81

cosh2 21 + (p
′2
1 /p

′′2
1 ) sin2 81

(123)

(S1)2 = [2(4p
′2
1 /|1 + p2

1|2) sinh21 cos81 + 2(p′
1/p

′′
1)

×(1 − |p1|4/|1 + p2
1|2) cosh21 + sin81]/[cosh2 21 + (p

′2
1 /p

′′2
1 ) sin2 81]−1

(124)

(S1)3 = [2(2p′
1(1 − |p1|2)/|1 + p2

1|2) cosh21 cos81 − 2(2p
′2
1 (1 + |p1|2)/p′′

1|1 + p2
1|2)

×sinh21 sin81]/[cosh2 21 + (p
′2
1 /p

′′2
1 ) sin2 81]−1. (125)

These are the expressions of the one-soliton solution for a spin chain with an easy plane
which have been found recently [3, 4]. They cannot be obviously factorized in forms of
separated variables even in moving coordinates. Hence, it is hopeless to solve the Landau–
Lifshitz equation for a spin chain with an easy plane by means of separating variables.

For the limit asρ → 0, namely, the anisotropy vanishes, it is convenient to use an
auxiliary parameterζ in (6). The parameterk is related with it as

k = ip = ζ + ρ

ζ − ρ
. (126)

One can then express the expression of the one-soliton solution in terms of the parameter
ζ . We restrictζ1 in the upper half plane of complexζ and |ζ1| > ρ. Then from (108), we
find

p′
1 = 2ρ

ζ ′′
1

|ζ1 − ρ2|2 p′′
1 = −ε

|ζ1|2 − ρ2

|ζ1 − ρ|2 (127)

whereε = ±1 correspond top′′
1 < 0 andp′′

1 > 0, respectively. We finally obtain

(S1)1 = 1 − 2
(ζ

′′2
1 /|ζ1|2) + (4ρ2ζ

′′2
1 /(|ζ1|2 − ρ2)2) sin2 81

cosh2 21 + (4ρ2ζ
′′2
1 /(|ζ1|2 − ρ2)2) sin2 81

(128)

(S1)2 = [2(ζ
′′2
1 /|ζ1|2) sinh21 cos81 − 2(ζ ′

1ζ
′′
1 (|ζ1|2 + ρ2)/|ζ1|2(|ζ1|2 − ρ2))

×cosh21 sin81]/[cosh2 21 + (4ρ2ζ
′′2
1 /(|ζ1|2 − ρ2)2) sin2 81]−1 (129)

(S1)3 = [2(ζ ′
1ζ

′′
1 /|ζ1|2) cosh21 cos81 + 2(ζ

′′2
1 (|ζ1|2 + ρ2)/|ζ1|2(|ζ1|2 − ρ2))

×sinh21 sin81]/[cosh2 21 + (4ρ2ζ
′′2
1 /(|ζ1|2 − ρ2)2) sin2 81]−1. (130)

12. Concluding remark

To show the expected asymptotic behaviours of the multi-soliton solutions in the limit of
t → ±∞, it is convenient to rotate the 1-axis to the 3-axis, as it has been discussed in a
previous paper [4].

In the present work, an appropriate procedure is developed for solving the Riemann
matrix with poles and it has been used to give explicit expressions of the multi-soliton
solutions to the L–L equation for a spin chain with an easy plane. It is obvious that the
same procedure can be used for other nonlinear equations if their Lax pairs are 2×2 matrices
with anti-Hermitian evolution properties.
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Appendix

We write

Qnm = 1

pn + p̄m

n, m ∈ {1, 2, . . . , M}. (A.1)

Its minor of order ofr, Qr(n1, . . . , nr; m1, . . . , mr), is a determinant of a submatrix ofQ

by taking the remaining(n1, . . . , nr)th columns and(m1, . . . , mr)th rows. From (A.1) we
can find

Qr(n1, . . . , nr; m1, . . . , mr) =
∏
n,m

1

pn + p̄m

∏
n<n′,m<m′

(pn − pn′)(p̄m − p̄m′) (A.2)

where

n, n′ ∈ {n1, . . . , nr} m, m′ ∈ {m1, . . . , mr}. (A.3)

Hence,QM is also obtained by settingr = M. In terms ofpm, we have

aj ≡ iaj = 1

pj + p̄j

∏
n6=j

pj − pn

pj + p̄n

. (A.4)

Q̂M−1(j ; l) denotes a minor of order ofM, that is a determinant of a submatrix ofQ by
deleting thej th column and thelth row. Its expression is similar to the right-hand side of
(A.2), but replacing (A.3) with

m, m′ 6= j n, n′ 6= l. (A.5)

Elements ofQ−1 are given by

(Q−1)lj = (−1)j+l Q̂M−1(j ; l)

QM

. (A.6)

We have

(Q−1)lj = a−1
j Qjlā

−1
l . (A.7)

Introducing a diagonal matrix

(a) = diag(a1, a2, . . . ,aM) (A.8)

(A.7) can be rewritten in matrix form,

Q−1 = (ā)−1QT(a)−1. (A.9)

We write

a(p) =
M∏

n=1

p − pn

p + p̄n

. (A.10)

a(p) can be expanded in partial fraction

a(p) = 1 −
M∑

n=1

1

p + p̄n

1

ān

. (A.11)
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Settingp = pm, the left-hand side vanishes obviously, and hence

M∑
n=1

1

pm + p̄n

1

ān

= 1. (A.12)
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